首页> 外文OA文献 >Algorithms for some infinite-state MDPs and stochastic games (invited talk)
【2h】

Algorithms for some infinite-state MDPs and stochastic games (invited talk)

机译:一些无限状态mDp和随机游戏的算法(邀请演讲)

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

I will survey a body of work, developed over the past decade or so, on algorithms for, and the computational complexity of, analyzing and model checking some important families of countably infinite-state Markov chains, Markov decisionprocesses (MDPs), and stochastic games. These models arise by adding natural forms of recursion, branching, or a counter, to finite-state models, and they correspond to probabilistic/control/game extensions of classic automata-theoretic models like pushdown automata, context-free grammars, and one-counter automata. They subsume some classic stochastic processes such as multi-type branching processes and quasibirth-death processes. They also provide a natural model for probabilistic procedural programs with recursion.Some of the key algorithmic advances for analyzing these models have come from algorithms for computing the least fixed point (and greatest fixed point) solution for corresponding monotone systems of nonlinear (min/max)-polynomial equations. Such equations provide, for example, the Bellman optimality equations for optimal extinction and reachability probabilities for branching MDPs (BMDPs). A key role in these algorithms is played by Newton’s method, and by a generalization of Newton’s method which is applicable to the Bellman equations for BMDPs, and which uses linear programming in each iteration. By now, polynomial time algorithms have been developed for some of the key problems in this domain, while other problems have been shown to have high complexity, or to even be undecidable. Yet many algorithmic questions about these models remain open. I will highlight some of the open questions.
机译:我将调查过去十年左右开发的工作量,其中涉及一些重要的无穷无穷状态马尔可夫链,马尔可夫决策过程(MDP)和随机博弈的算法及其分析和模型的计算复杂性。这些模型是通过将自然形式的递归,分支或计数器添加到有限状态模型中而产生的,并且它们对应于经典自动机理论模型(如下推自动机,无上下文语法和单项)的概率/控制/游戏扩展。反自动机。他们包含一些经典的随机过程,例如多类型分支过程和准死亡过程。它们还为带递归的概率过程程序提供了自然模型。分析这些模型的一些关键算法进展来自算法的计算,该算法用于计算非线性(最小/最大)对应单调系统的最小不动点(和最大不动点)解)-多项式方程式。这样的方程式提供了例如Bellman最优方程式,用于分支MDP(BMDP)的最佳灭绝和可达性概率。这些算法中的关键作用是由牛顿方法和牛顿方法的推广而来的,牛顿方法适用于BMDP的Bellman方程,并且在每次迭代中都使用线性编程。到目前为止,已经针对该领域中的一些关键问题开发了多项式时间算法,而其他问题已被证明具有很高的复杂度,甚至是无法确定的。关于这些模型的许多算法问题仍然存在。我将重点介绍一些未解决的问题。

著录项

  • 作者

    Etessami, Kousha;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号